# 9204 微生物鉴定指导原则

本指导原则为非无菌产品微生物限度控制菌检查中疑似菌的鉴定,以及兽药原料、辅料、制药用水、中间产品体、终产品和、环境、包装材料和容器等中检出微生物的鉴定提供指导。当微生物的鉴定结果有争议时,以现行版《伯杰氏系统细菌学手册》(《Bergey's Manual of Systematic Bacteriology》)现行版的鉴定结果为准。

微生物鉴定是指借助现有的分类系统,通过对未知微生物的特征测定,对其进行细菌、酵母菌和霉菌大类的区分,或属、种及菌株水平确定的过程。微生物鉴定它是兽药微生物检验中的重要环节,兽药典通用技术要求附录相应章节中对检出微生物的鉴定做了明确规定,如"非无菌产品的微生物检查:控制菌检查"(通则附录1106)中选择培养基或指示培养基上发现的疑似菌落需进行鉴定;对"无菌检查法"(通则附录1101)的阳性实验结果中分离的微生物进行鉴定,以判定试验是否重试;兽药洁净实验室微生物监测和控制指导原则(通则附录9205)中建议对洁净室和其他受控环境分离到的微生物进行鉴定,以掌握环境微生物污染情况,有助于污染调查。此外,在兽药生产中,有时亦需对兽药药物原料、辅料、制药用水、生产环境、中间产物和终产品中检出的微生物进行适当水平的鉴定。

微生物鉴定需达到的水平视情况而定,包括种、属鉴定和菌株分型。大多数非无菌兽药生产过程和部分无菌生产环境的风险评估中,对所检出微生物的常规特征包括菌落形态学、细胞形态学(杆状、球状、细胞群、孢子形成模式等)、革兰染色或其他染色法特性、及某些能够给出鉴定结论的关键生化反应(如氧化酶、过氧化氢酶和凝固酶反应)进行分析,一般即可满足需要;非无菌兽药产品的控制菌检查应达到<mark>兽药典规定药物</mark>的水平;无菌试验结果阳性、和无菌生产模拟工艺(如培养基灌装)失败时、环境严重异常事件时,对检出的微生物鉴定至少达到种属水平,必要时需达到菌株水平。

## 一、微生物的鉴定程序

微生物鉴定的基本程序包括分离纯化和鉴定,鉴定时,一般先将待检菌进行初步的分类。鉴定的方法有表型微生物鉴定和基因型微生物鉴定,根据所需达到的鉴定水平选择<mark>合适的</mark>鉴定方法。微生物鉴定系统是基于不同的分析方法,其局限性与方法和数据库的<mark>鉴定能力局限性</mark>息息相关,未知菌鉴定时通过与微生物鉴定系统中的参考标准微生物(模式菌株、标准菌株或经确认的菌株等)的特征(基因型和/或表型)相匹配来完成。如果数据库中没有对应的此模式菌株信息,就无法获得正确的鉴定结果。在日常的微生物鉴定试验中,用户应明确所采用鉴定系统的局限性及所要达到的鉴定水平(属、种、菌株),选用最适合要求的鉴定技术,必要时采用多种鉴定方法确定。

#### (一) 待检菌的分离纯化

微生物鉴定的第一步是待检培养物的分离纯化,最常用的分离纯化方法是挑取待检菌在适宜的固体培养基上连续划线分离纯化,以获取待检菌的纯培养物(单个菌落),必要时可进一步进行纯培养,为表型鉴定和随后的鉴定程序提供足够量菌体。从**兽**药物原材料、辅料、

制药用水、<del>生产环境</del>、中间产品物和、终产品、环境、包装材料和容器等的样品中检出的受损微生物,经分离纯化程序使其由不利生存易产生变化的状态转变为在营养富集和最佳培养温度条件下生存的稳定状态,以保证鉴定结果的准确性。

## (二) 初筛试验

常规的微生物鉴定,一般要先进行初筛试验确定待检菌的基本微生物特征,将待检菌做初步分类。常见的初筛试验包括<del>革兰染色、芽孢染色、镜检观察染色结果和细胞形态</del>形态观察、染色镜检(或氢氧化钾拉丝试验)、重要的生化反应等。

重要的生化筛选试验如下包括:

- (1) 氧化酶试验 用于区分不发酵的革兰阴性杆菌(氧化酶阳性)和肠道菌(氧化酶阴性);
- (2) 过氧化氢酶试验 用于区分葡萄球菌(过氧化氢酶阳性)和链球菌(过氧化氢酶阴性): —
- (3)凝固酶试验 用于区分凝固酶阴性葡萄球菌 (可推测为非致病性)和凝固酶阳性葡萄球菌 (很可能为可能具有致病性)。

初筛试验可为评估提供有价值的信息。对于微生物鉴定方法来说,初筛试验是**非常最**关键的一步,若给出了错误的结果,将影响后续试验,包括微生物鉴定试剂盒和或相关引物等的选用。

## (三) 表型微生物鉴定

表型微生物鉴定依据表型特征的表达来区分不同微生物间的差异,是经典的微生物分类 鉴定法,以微生物细胞的形态和习性表型为主要指标,通过比较微生物的菌落形态、理化特 征和特征化学成分与典型微生物的差异进行鉴别。微生物分类中使用的表型特征见表1。

| 分类   | 特征                                                  |
|------|-----------------------------------------------------|
| 培养物  | 菌落形态。(菌落颜色、形状、大小等)、 <del>和</del> 产色素                |
| 形态学  | 细胞形态录 (细胞大小、细胞形状、鞭毛类型等)、内容物、<br>革兰染色、芽孢和抗酸染色、孢子形成模式 |
| 生理学  | 氧气耐受性、pH 值范围、最适温度和范围、耐盐性                            |
| 生化反应 | 碳源的利用、碳水化合物的氧化或发酵、酶的模式                              |
| 抑制性  | 胆盐耐受性、抗生素敏感性、染料耐受性                                  |
| 血清学  | 凝集反应、荧光抗体                                           |
| 化学分类 | 脂肪酸构成、微生物毒素、全细胞组分                                   |
| 生态学  | 微生物来源                                               |

表1 微生物分类中使用的表型特征

微生物细胞的大小和形态、芽孢、细胞成分、表面抗原、生化反应和对抗菌剂的敏感性等表型的表达,除受其遗传基因的控制外,还与微生物的分离环境、培养基和生长条件等因素有关。表型微生物鉴定通常需要大量的纯培养物,而微生物的恢复、增殖和鉴定易受培养时间影响,事实上许多环境微生物在普通的微生物增殖培养基中是无法恢复的;此外,一些从初始培养物中刚分离出的受损微生物还可能不能完整<del>的</del>地表达其表型属性。因此,在表型

鉴定时应注意采用的培养基、培养时间和传代次数对鉴定结果的影响。目前已有的基于**化学** 分类碳源利用和生化反应特征</del>的鉴定方法,如气相色谱法分析微生物的脂肪酸特征、基质辅 助激光解吸电离飞行时间质谱法(MALDI-TOF)质谱法主要分析微生物的特征蛋白等微生物鉴定系统,在进行结果判断时需借助于系统自身的鉴定别数据库,还依赖特定的培养基和培养方法以确保鉴定结果的一致性。

表型微生物鉴定方法已广泛应用于兽药微生物实验室。根据微生物表型鉴定所提供的信息可以判断兽药中污染的微生物种类。也可掌握环境微生物<mark>菌群</mark>群落的变化,并进行产品的风险评估。在许多质量控制调查中,<del>单独的</del>表型鉴定结果就能给出一定充足的信息帮助调查人员进行深入调查,并按需要推荐适宜的纠正措施。

## (四) 基因型微生物鉴定

与表型特征不同,微生物基因型通常不受生长培养基或分离物活性的影响,只需分离到纯菌落便可用于分析。由于大部分微生物物种中核酸序列是高度保守的,所以DNA—DNA—杂交、聚合酶链反应、16S rRNA—序列—和—18S rRNA—序列、多位点序列分型、焦磷酸测序、DNA—探针和核糖体分型分析聚合酶链式反应(PCR)、DNA探针、DNA-DNA杂交、多位点序列分型、核糖体分型分析、16S 核糖体RNA(16S ribosomal RNA)核酸测序、18S 核糖体RNA(18S ribosomal RNA)核酸测序、内转录间隔区(internal transcribed spacer,ITS)核酸测序和全基因组核酸测序等基因型微生物鉴定方法理论上更值得信赖。基因鉴定法不但技术水平需要保证,还需要昂贵的分析设备和材料,通常仅在关键微生物调查中使用,如产品不合格调查。若使用,方法必须经过确认。通常在无菌检查试验结果阳性、非无菌兽药控制菌检查中疑似菌的鉴定、环境监控异常、偏差调查、培养基模拟灌装失败等微生物调查中使用。

目前《伯杰氏系统细菌学手册》中对细菌分类的描述是通过遗传物质的分析比较来实现的。通过未知微生物的DNA与已知微生物的DNA比较,能够确定亲缘关系的远近。基因型的鉴定可通过DNA杂交、限制性酶切片段图谱的比较和/或DNA探针完成,若DNA-DNA的杂交亲缘关系大于70%时,可判定相关微生物表明微生物是属于同一个种属;表2系统发育典型的分析方法是通过比较细菌16S rRNA基因、或真菌18S rRNA基因、ITS区域核酸的部分碱基序列来实现,即经过聚合酶链反应(PCR)进行基因扩增、电泳分离扩增产物、以双脱氧链终止法进行碱基核酸测序,然后与经验证过的专业用数据库或利用公共的数据库(不一定经过验证)进行比对鉴定分析。

| 类别     | 特征                                                      |
|--------|---------------------------------------------------------|
| 基因型    | DNA-DNA 杂交、DNA 碱基比例(如G + C)、核                           |
|        | 酸序列、限制性酶切片段图谱和DNA 探针                                    |
| 系统发育结构 | 16S rRNA基因序列、 <del>和</del> 18S rRNA基因序列、 <b>26S RNA</b> |
|        | 基因序列、ITS序列、全基因组序列                                       |

表 2 微生物分类学的基因型/系统发育的特征

基于核酸的方法可以用来筛选处于过渡期受损的微生物。将存在于过渡期与菌株生存能力相关的rRNA,通过逆转录的方法转换为可用于PCR扩增的DNA。解决了不<mark>可培养能存活的细菌微生物</mark>细胞中DNA的扩增问题。该方法经过样品收集、核酸提取、目的片段扩增<del>、杂交</del>和检测等步骤,涉及了变异微生物的检测、检测限、基质效应、正向截点的核查、仪器

设备和系统携带污染、分析的精确性和试验的重现性等内容。

rRNAs 记录了微生物的进化历史,对这些序列进行分析可以对微生物进行系统分类和鉴定。

#### 二、微生物鉴定方法的确认

微生物鉴定系统的确认试验按下述方法之一进行: (1)采用现有方法和待确认方法对日常检验中分离的微生物约50株进行平行鉴定试验,鉴定结果的差异可使用仲裁方法判定。(2)使用12~15种已知的能代表常规分离到的微生物的储贮备菌种,共进行50次鉴定试验。(3)待确认方法对20~50株微生物(包括15~20个不同的种)进行鉴定,结果应与参照实验室的鉴定结果一致。确认试验所用的菌株应包括鉴定方法供应商和普药典推荐的适宜质控菌株。

对所用的微生物鉴定系统的鉴定结果应进行评估,同时还应考虑其一致性水平,合适的 微生物鉴定系统中,试验菌株与参考模式微生物的一致性水平通常应大于90%。若可能,微生物鉴定方法确认所用的挑战微生物应包括非发酵型细菌、棒状杆菌和凝固酶阴性的葡萄球菌等,但其一致性水平可能比较低。

微生物鉴定系统不能鉴定所有的微生物,因为数据库中未包含此微生物,或系统参数无 法充分识别该微生物,或该微生物在系统中无反应、或该微生物尚未被分类描述等。错误鉴 定结果的确认是比较难的,任何微生物鉴定都应从微生物形态学、生理要求和微生物来源等 多方面判断鉴定结果是否合理。错误的鉴定会导致不恰当的纠正和预防措施及产品处置。

微生物鉴定方法的确认应包括准确度、专属性、重现性、灵敏度、阳性预测值、阴性预测值。

确认试验最重要的是准确性度和重现性。这些测量值按下述定义:

准确性度=(结果正确的数量/总的结果数量)×100%

重现性=(结果正确且达到一致性的数量/总的结果数量)×100%

<del>实验室用户</del>应该考虑鉴定方法的适用性,建立准确<del>性</del>度和重现性的接受标准。

其他测定值,如灵敏**度性**、专属性、阳性或阴性预测值。通过以下例子能很好<mark>的地</mark>说明这些测定值。例如,临床微生物实验室,分别用DNA杂交探针和传统培养物方法处理了100个临床样本,前者阳性结果比后者高10%,结果列于表3。

 培养方法结果

 阳性
 阴性

 DNA杂交探针
 阳性
 9
 2

 结果
 阴性
 1
 88

表 3 DNA 探针和培养物方法的阴阳性结果分布对照

准确度=(9+88)/100×100%=97%

灵敏度=[9/(9+1)]×100%=90%

专属性=[88/(88+2)]×100%=97.7%

阳性预测值(PPV)=[9/(9+2)]×100%

=81.8%

阴性预测值(NPV)=[88/(88+1)]×100%=98.9%

应注意到试验的阳性预测值不是固定的,它取决于临床样本中微生物的普遍程度。阳性预测值与流行疾病和条件成正比。如果在一组人群试验中感染人数比例较高,则阳性预测值较高,阴性预测值较低。如果组中所有人都被感染,则阳性预测值为100%,阴性预测值为0%。这些函数引出的数字列于表4中。

聚合酶链式反应 阳性 阴性 总数 b 假阴性 阳性 a 真阳性 a+b培养方法 阴性 d 真阴性 c+dc 假阳性 总数 a+cb+d

表 4 培养物方法和 PCR-替代方法的鉴别结果比较表

灵敏度(%)= $[a/(a+b)]\times 100\%$ 

专属性(%)= $[d/(c+d)]\times 100\%$ 

阳性预测值(%)= $[a/(a+c)]\times 100\%$ 

阴性预测值(%)= $[d/(b+d)]\times 100\%$ 

分析准确度(%)=[(a+d)/(a+b+c+d)]×100%

Kappa Index 系数= $2(ad-bc)/[(a+c)\times(c+d)+(a+b)\times(b+d)]$ 

#### 三、系统发育的相关内容

现行版《伯杰氏系统细菌学手册》<del>(第二版)</del>内容是依据核糖体小亚基16S rRNA的核苷酸序列分析,按照系统发育为框架编写的,而不是按照表型结构编写的。

系统发育树或树状图可显示子遗传关系最接近的微生物,这项技术的应用导致了分类的修正和一些已知微生物的重命名,如真菌黑曲霉ATCC 16404 被重名为巴西曲霉。**系统进化分析中**,一般而言,同源性微生物亲缘关系小于或等于97%被认定为不同的属,同源性那些亲缘关系小于或等于99%被认定为不同的种,但是这种普遍性有很多的例外情况。

基因型鉴定与表型鉴定的结果差异的情况相对比较少见,例如,具有相同或非常相似基因型的微生物具有不同的表型、具有相似表型的却具有不同的基因型,以及基因型距离较很远的微生物不能被归为同种或同属。多相分类学的概念是汇集和吸收了分子生物学、生理学、形态学、血清学或生态学等资源的多层信息进行微生物分类,例如,微生物特征描述、表型和基因数据及微生物来源等,都可被成功地应用于微生物鉴定中,以避免因使用单一鉴定方法得做出错误毫无意义的结论。

#### 四、溯源分析

溯源分析是通过对<del>污染</del>目标微生物和相关环节监控<mark>发现的疑似</mark>微生物进行比对,以**菌株** 之间同源性的差异程度为依据,确认<del>污染</del>目标微生物来源的过程。实现目标微生物有效的 溯源调查分析,一般需采用较高分辨力的菌株分型和鉴定方法对相关微生物进行同源性分 析。

菌株分型通常需在菌种鉴定基础上开展。常见的菌株分型方法包含限制性核酸内切酶 Southern 杂交方法、脉冲场凝胶电泳方法、多位点序列分型、全基因组测序方法等。限制 性核酸内切酶进行酶解的Southern 杂交根据菌株基因组DNA中的特定区域是否有相似的 酶切位点,是否可得到一致的酶切杂交谱带,进行菌株的鉴定和分类,适用于菌株之间的同源性分析。脉冲场凝胶电泳是根据菌株基因组DNA中限制性核酸内切酶酶解后条带的数量和大小,进行菌株分型的技术手段,应用于菌株之间的同源性分析时,结果较限制性核酸内切酶酶解的方法更准确。全基因组核酸测序可以得到菌株核酸水平的全部遗传信息,通过核酸序列的比对分析,进行菌株的鉴定、分型与溯源,结果更加客观、准确,是溯源分析技术发展的主要趋势。

菌株水平的鉴定在污染调查过程中非常重要,尤其适用于产品中的微生物数量高于建议 水平或出现异常高的微生物检出情况时。菌株水平的鉴定在无菌工艺中也很重要,在无菌试验结果阳性和培养基灌装等模拟工艺失败时,应对检出的微生物进行评估。

同一地点的同种菌其表型特征和基因型特征是基本一致的。不同地点的同种菌表型特征 可能基本一致,但保守及可变区域的基因特征会有一定的差异性。因此污染调查等应以基因 型特征鉴定为主,表型特征鉴定为辅。

细菌16S rDNA\_和真菌的18S rDNA\_为各自的保守序列区域,对种水平的鉴定是非常有用的,但不足以区分亲缘关系近的不同种或同种中的不同株。与此相反,限制性核酸内切酶进行酶解的Southern\_杂交是能有效地显示两个株之间的差异。如果带型表现的完全相同则仅能说明限制性核酸内切酶在两株菌基因组的那个区域具有相似的酶切位点,要证明两株菌是同一株时应该包括两个或更多不同限制性核酸内切酶的酶解物,每个内切酶都可得到一定的DNA区域的谱带,所有来自两株菌的谱带都必须完全一致。如脉冲场电泳等,就是利用此原理进行菌株区分的。

实际工作中无菌试验阳性结果中分离出的微生物,经对其溯源分析,确认污染归因于无菌试验过程中所使用的材料或无菌技术的差错,该试验可判无效,否则判该产品不符合要求。对洁净室和其他受控环境分离到的微生物进行适当比率的鉴定,掌握环境微生物污染情况,有助于污染调查。

不同菌株分型方法原理和效果具有一定差异性,溯源调查时应根据菌株自身的特定和 应用场景选择合适的方法,采用基因型鉴定方法或多种方法联用,并结合菌株来源数据等 信息进行综合判断,实现目标微生物的溯源调查分析。

高分辨力的菌株分型方法能够有效实现菌株水平的鉴定,这对于微生物污染调查分析非常重要,尤其适用于产品中的微生物数量高于建议水平或标准限值时。菌株水平的鉴定在无菌保障中也很重要,在无菌试验结果阳性和培养基灌装等模拟工艺失败时,应对检出的微生物进行溯源调查及评估分析。其中无菌试验结果阳性,经溯源调查分析,确认污染归因于无菌试验中所使用的物品和/或无菌操作技术不当引起的,或无菌检查试验所用的设备及环境的微生物监控结果不符合无菌检查法的要求等因素,可判该试验结果无效。

对兽药原料、辅料、制药用水、中间产品、终产品、环境、包装材料和容器等开展有效的监控分析,并对分离到的微生物进行适宜水平的鉴定,基于种群多样性趋势分析建立 生产过程微生物分布地图,充分掌握兽药及生产全过程微生物污染情况,有助于污染微生物的溯源调查。

为了确证微生物为同种中的两个相同株,需比对更多的基因序列和特征基因片段,甚至 是全基因<mark>组序列</mark>的比对,实现既鉴定又溯源的目的,同时保证结果的准确性。此外,有些微 生物的溯源还需结合表型特征鉴定,如沙门菌属的血清型鉴定。

